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Abstract. We discuss the analytic properties of the configuration-averaged Green function 
obtained using the seli-mnsistent cluster coherent-potential approximation, developed in 
the augmented-space formalism. It isshown that the iteration scheme for the self-energy is 
always convergent to a unique value, which is bounded and herglolz, provided we start off 
with a bounded and hegloa guess. This ensures that we shall always get a unique, non- 
negative density of states at all energies. 

1. Introduction 

Our understanding of the electronic properties of random, substitutionally disordered 
alloys has increased greatly since the introduction and application of the coherent- 
potential approximation (CPA) (Soven 1967, Taylor 1967, Velicky eta1 1968). The CPA 
yields a unique and analytic averaged Green function and guarantees a non-negative 
density of states (Muller-Hartman 1973, Ducastelle 1974). In spite of all the successes it 
has achieved, the CPA, being a single-site approximation, cannot be used to investigate 
local environmental effects, which involve correlations among many sites. 

The idea of extending the CPA to include the effects of clusters, short-range order 
and off-diagonal disorder has been mooted by several authors in both the tight-binding 
and Korringa-Kohn-Rostoker (KKR) frameworks (Nickel and Krumhansl 1971, Tsu- 
kada 1969, 1972, Bishop and Mookerjee 1974, Kaplan er af 1980, Mills and Rat- 
anavararaksa 1978, Mills er all983, Kaplan and Gray 1984, Mookerjee 1987a, Razee et 
a1 1990). One of the major difficulties with most generalizations is the violation of the 
analytic properties of the approximated averaged Green function (Nickel and Butler 
1973), thereby giving unphysical results. The successful generalizations of the CPA that 
have been proved to be analytic are the travelling cluster approximation (Mills and 
Ratanavararaksa 1978, Kaplan et al 1980) and the molecular CPA (Tsukada 1972). A 
simpler generalization of the CPA is theclustercoherent-potential approximation  PA) 
(Kumar er al 1982, Mookerjee 1987b), which is developed in the augmented-space 
formalism (ASF) (Mookerjee 1973, Kaplan and Gray 1976a, b). The exact nature of this 
approximation and its analytic properties need explicit discussion. This is to put to rest 
doubts about the analytic properties of the CCPA as well as loose statements about the 
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travelling cluster approximation being the only possible generalization of the single-site 

The outline of this paper is as follows. In section 2 we present the basic formulation. 
In section 2.1 we outline the analytic properties of the Green function and the self- 
energy in the exact case. In section 2.2 we briefly discuss the ASF and in section 2.3 we 
derive the CCPA equations. In section 3 we prove three propositions regarding the 
analyticity of the CCPA; we show that the density of states is always positive within the 
CCPA and that the iteration scheme for the self-energy always converges to a unique and 
bounded value if we start the iteration with a bounded guess. Finally, a conclusion is 
given in section 4. 

S S A Razee et a1 

CPA. 

2. Formulation of the problem 

There is considerable confusion over the notations used in the discussions of the aug- 
mented space. A description of configuration fluctuations of very large systems is 
intrinsically difficult. To make it easily comprehensible, we shallfollow a hybrid between 
the notations of Kaplan era1 (1980) and ourown earlier notations. 

2.1. Generalproperties of the Green functions 

We consider a random tight-binding Hamiltonian H, given by 

H = 2 E ,  li)(il + V ,  li)(jl. 
1.1 

W J )  

The states {li)} are Wannier states associated with the sites {i}. The Green function of 
this system is given by 

G(z)  = (zl - H)-' (2.2) 

where z is a complex number. In this paper. we will always work on the upper half-plane, 
Im z > 0. The imaginary part of an operator A is defined by 

Im A = (A - A')/2i 

Im G(z) = -G*(z)G(z) Im z 

(2.3) 

where A' is the Hermitian adjoint of A. It then follows from equation (2.2) that 

( 2 4  

where 

G'(r) = G(z*) .  

Since H is real and bounded, it follows from equations (2.2) and (2.4) that G(z) is a 

(i) G(r )  is analytic everywhere except for parts of the real z axis, 
(ii) its spectrum is bounded and G(z) behaves like 1/z as z +  A=,  and 
(iii) Im G(z) < 0 for Im z > 0. 

herglorz analytic function, i.e. 



Augmented-space cluster coherent-potential approximation 3303 

The configuration-averaged Green function is given by 

(G(z)) E G(z)  = (zl - E)-'. 

Im G(z )  = -(G(z)G'(z)) Im z. 

(2.5) 
The operator Z is called the self-energy operator. Averaging equation (2.4) we get 

(2.6) 
Therefore, the averaged Green function G(z)  retains the hcrglofz analytic properties of 
the exact Green function G(z). Again, from equation (2.5) we get 

Im G ( z )  = -G(z )  h ( z 1 -  Z)G'(z) (2.7) 

which implies that Im Z is negative definite (Ducastelle 1974). For any approximation 
to give physically acceptable results, the approximated averaged Green function and 
the self-energy must satisfy the herglotz properties. 

2.2. The artgmented-space formalism 

Let F([ni}) be a function of a set of random variables {ni}, whose probability densities 
pi(ni) have finite moments to all orders. Thusp;(ni) can always be written as a continued- 
fraction expansion (Shohat and Tamarkin 1963), which means that we can write pi(ni) 
as the matrix element 

pi(ni) = -(l/n) Im(uLI[(n; + i0)l- Mi]-' Ivb) 

where Mi is an operator in the vector space Gi, called the configuration space. The 
representation of M, in &is a tridiagonal matrix. The ground configuration state Iub) is 
such that ( V L I  Mi 1ui)isthe firstelement inthecontinued-fractionexpansion(Mookerjee 
1973). Note that the vector space @; is spanned by the different configuration states 
{I&)}, where m is the cardinality of the basis (Paquet and Leroux-Hugon 1984). 

The augmented-space theorem (Mookerjee 1973) then tells us that the configuration 
average of F({n;}) is given by 

(F({n,})) = (fl W W f )  (2.8) 
where fi({M,}) is an operator functional in the augmented space Y = X@ Q. Here Xis , 
the real Hilbert space spanned by {I;)} and Q = IIi q5; is the total configuration space. 
The state If) = IIi ]vi) is the ground configuration state in the total configuration space 
Q. A general configuration state spanning 0 is of the form 

If',.c) = IUL] V L 2  vi,. , . v i , .  , . ) 
and can be uniquely described by the set of points U = [ j :  mi # 0) at which there are 
excitations and the set of cardinalities C = {mi} at those points (Paquet and Leroux- 
Hugon 1984). In the case of binomial distributions (as for binary alloys) the cardinality 
of any excitation is 1 and this labelling C may be omitted. In the following, unless 
essential, we shall omit the cardinality label. In this notation,Jhe ground configuration 
state I f )  E Ifm),whereOisthenullset. Weshallalso write(f~IQlf~.)asQ~". Intheabove 
notation, the augmented-space theorem may be written as 

( F ( I d ) )  = [F({Mi})lm. (2.9) 
The disordered Hamiltonian of equation (2.1) is a function of the random variables, 
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i.e. H = H((ni}). By the augmented-space theorem, the configuration-averaged Green 
function can be written as 

S S A  Razee et a1 

(G(z)) - [[Zi - fi({MJ)]-'BBZ = [G({MJ)Im (2.10) 

where H({Mi}) is the augmented Hamiltonian acting on the augmented space and con- 
structed by replacing the ni in H({ni}) by the corresponding Mi (Mookerjee 1973). 
Note that our discussion includes off-diagonal disorder (Kaplan and Gray 1976a) and 
Markovianshort-range order (Gray and Kaplan 1981) in theconstructionoftheoperator 
M,. In the case where disorder is homogeneous, i.e. if pi(ni) is independent of the 
label i ,  the augmented Hamiltonian has the following translational symmetry in the 
augmented space Y: 

i f T =  [ i + i  + n;u- ( i , j , .  . .)- o +  n -  (i+ n , j  + n , .  . .);Ifo)+ \f,+.}] 
then 3H = H, 

In any approximation, theself-energy should also satisfy thistranslational symmetry. 

2.3. The cluster coherent-potential approximation (CCPA) 

Equation (2.10) is an exact expression, and therefore will yield a herglolr averaged 
Green function. But we observe that the rank of the augmented space is A' X ZN, and 
hence it is not possible to use equation (2.10) for computational purposes, since N is 
very large. Thus the CCPA is used to overcome this difficulty. In the following we analyse 
the procedure leading to the CCPA. 

W e  choose a finite compact cluster C of sites in %e. It is immaterial which particular 
setofsiteswechoose. What isimportant isthe relativepositionofthesesiteswith respect 
to one another. Let % be the set of configurations of this cluster. 

I n  the first step. we define a subspace Y I spanned by {Ii,fJ, i E C, f, E '@I and its 
comp1ementinY,Y2 = Y\Yl.IfwepartitionY intothesetwosubspaces,thepartition 
theorem gives 

GI = (21, - HI - H,,G~HI~)"I = (21, - H)- '1  (2.11) 

where 

A =HI + HI2G2Hi2 HI =9PlH?P1 HZ = P2fiP2 

H12 = ?PlHP2 G, = ( ~ 1 2  - H z ) - P z  

9, is the projection operator in the subspace labelled by j and X-'J is the inverse of the 
operator X in the subspace labelled by jalone. If we write H = HI + 6, then we have 

(2.12) 

We shall now introduce the crucial approximation on .$, io which the subspace Y2 is 
replaced by an effective medium and therefore has only one configuration, namely the 
groundstate If). Note that the effective mediumis translationally symmetric. It isdefined 
by the self-energy 2, which is the effective Hamiltonian. Therefore, we have 

Gra' = G2(Z)6wep6a HYt =Zu6& Gz(Z) = (212 - Z2)-'2 (2.13) 

where & and X12 are m X m and n X m matrices made by partitioning the self-energy 
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2, such that the cluster has n sites and m = N - n,  N being the system size. Therefore, 
equation (2.12) now reads 

cod = Z,2G&:26,,,. . (2.14) 

We note that G2 = G(c), i.e. it is the Green function of the e8ective medium, calculated 
on the lattice from which the cluster C has been removed. 

Inthe secondstep,wepartitionW, intoasubspace V,,spannedby{li,f),i E C},and 
its complement q2, spanned by (li,fo), u # D, i E C}. The partition theorem and the 
augmented-space theorem together yield 

(2.15) G = G,, = (21 - hi - hlJh]2)-Pv, 

where 

h, = 9vlQ9vl hl2 = 9P,,A9v, 
r = (zl - h2)-Pvp, h2 = 9v2H9v2. 

Here is the projection operator in the subspace vi and is given by 

Note that 
h o d  - A d 6  -HffiO' 

12 - a ! -  I 

which is independent of X, since subspace Y, contains the real cluster only. Thus we 
write 

hffio' I2 - - K h, = HffiO = H p  + cm. (2.16) 

It should be noted that H F  = H,, the virtual crystal Hamiltonian. 

subspace q, can be written as 
Now, for a translationally symmetric effective medium, the Green function in the 

(2.17) 

Here, Z is the self-energy of the full effective medium, and thus is an N-dimensional 
matrix, while Zvl is n-dimensional, where n is the size of the cluster. 

G,, err - - ( A  - Z)-'V> = (zl - Z,, - cWa)-'. 

The CCPA equations are obtained by equating equations (2.15) and (2.17) as 

Z = H,, + Kr(X)K' = %(X). 
In equation (2.18), we have suppressed the subscript 
essential since equation (2.18) is solved only in the cluster subspace. 

(2.18) 

in 2. This subscript is not 

3. Analytic properties of the CCPA Green functions 

Let us now restrict z to a compact subspace % of the upper half-plane such that, whenever 
z E %, llHJ s Xand 11K11 S Y. 

Proposition I .  If Im 2 < 0 in %, then Im %(Z) < 0. 
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Proof. We shall first show that, if A = BCB', then Im A and Im C have the same sign. 
We have 

S S A  Razee et a1 

Im A = (A - At)/2i = (1/2i)B(C - Ct)B' = B(Im C)B' 

from which the result follows. 

(since Im z > 0). Again, from equation (2.14) we get 
Let us call G p  = y a n d  e"= 5. Then y - l =  r l -  Z, so that Im y < Oif I m Z  < 0 

Im5=ZI2(Imy)Z: ,  <O. (3.1) 
Therefore, fl = HI + C+ Im H < 0, since HI is real. Again, we have 

r-l = 21 - h2 (3.2) hf0' = H O O '  + VO 
I 5 

which imply 

Im h, = Im 5 < O  

Im S(Z) = Im[KI'(Z)Kt] = K[lm r(Z)]K' < 0 

I m r < O .  

From equation (2.18) we get the required result 

Now let us consider the CCPA Green function as given in equation (2.15). which gives 

G-' = z l  - hl - WKt. 

We have seen that for Im Z < 0, Im h, < 0 and Im r < 0, which readily proves that 

in the plane Im z > 0 

and therefore guarantees positive density of states. 
To understand this, we illustrate it with the CCPA for a two-atom cluster (Mookerjee 

1987b). We take the cluster C = {0,1} and hence% = cf,fo,fl,fol}. For no off-diagonal 
disorder, the matrices h, and h,, are given by 

I m G < O  

vnl + VI" + 510 E +  Ew 
h, = ('+ 'Oo 

w o o o o o  
0 0 0 0 0 0 .  

h12 = ( 
where 

F = X E A  + yeB 0 = (X,')l'*(EA - Eg) 

andx and y are the respective concentrations of the constituents A and B. The matrix 
hz is a 6 x 6 tridiagonal matrix and thus r can be obtained easily. The averaged Green 
function can then be written as (Rajput era1 1990) 

(G, )=[z-T-E, -0Rb10-(Vol  + E o 1  + w Q w ) ( ~ - z - S w - w R ~ ' o ) - '  

X (Vin + E10 + w Q ' ~ ) l - '  (3.3) 
where 

d = X E B  + Y E A  

R6 = Z - - Eo0 - (Vin -k Eio)R?'(Vni 5 0 1 )  R, = z - E -  - w R i ' 0  
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R4 = z - e - Ew - (VOI + Soi)RS'(Vio + 510) 

Rz = - E -  5w - (Vi0 + 5io)Ri'U'oi + 501) 
R3 z - e -  - oRT'w 

RI = z - E - 500 
and 

Q =  R i l V o i  + 50i)R?'wRT'(Vio + 5io)RSiwRT'(Voi + Eoi)R;'. 

Im R, > 0, j = 1,2 , .  . , ,6. Therefore, from equation (3.3) we get 
We note that Im R ,  = -1m > 0 and this property is common to all the R,, i.e. 

Im (Goo(z)) < 0. 

Proposition2. IfllEll is bounded, so is 119(Z)Il. 
Proof. We shall use the inequality that, if Im A 2 x > 0, then ~ ~ A ~ ' ~ ~  S 1/x (Kaplan etal 
1980). We know that Im(zl - Z) 2 x > 0 for z E %, and for Im Z < 0, this implies that 
llyll s 1/x. Hence, from equation (2.14) we et 11611 < Y, where Y = q2/x ,  and llZll< q. 
Since H, is bounded above by X, we have 11 I$ 11 S X + Y, also bounded above. 

Now from equation (2.18) we note that 

I I ~ I I  ii~,,ii + I IKII~ i iwii. 

ll~'(x)Il< x + y 2 / r  

But since Im r-' > r > 0 (see proof of proposition l), IlS(X)ll S l/r, so that we have 

and thus is bounded. 

Proposition 3. The iterative chain E"+' = 9.Q") converges to a unique solution, pro- 
vided -1m > X > 0 and -1m En > Y > 0 at each stage of the iteration and xa, K and 
Go are bounded to start with. 
Proof. The iteration scheme for the self-energy can be written from equation (2.18) as 

Z m  = 9 ( Z m - ' )  = H,, + KTm-'Kt 

r m  = (21 - H~ - %")-I 

g = xcixt. 

(3.4) 
where 

and m is the number of iterations. We can rewrite equation (2.14) as 

Here we have suppressed the subspace indices in 2 and G for convenience, and these 
may be restored wherever appropriate. 

For the proof, we shall pick only the even steps in the iteration, i.e. form even, 

(3.5) 6" - I  = xm-ZGm-2(xm-3)t 6" = -&,?-2Gm-l(Xm-3)i 

where 

G" = (zl - Sm)- ' .  
Thus our iteration scheme is as follows: 

Zo+c1 = EoGo(x-')++x'+ c2 = ZoG1(X- ' ) f+2Z+~3 

=Z2G2(X')t+Z3+64 =E2G3(2')' - + a n d s o o n  

whereXo = %'isour startingself-energy, which we assume to be boundedandherglotz. 
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From equations (3.4) and (3.5) we have 
Atm = E m  - 6 m - 1  - x m - 2 G m - l A Z m - I G m - 2  (Zm-3) '  ( 3 . 6 ~ ~ )  

and 
~zt?? = z m  - E m - 1  = ~ p - l ~ p - l y m - 2 ~ + ,  (3.6b) 

SiceIm(G")-l 3 Y' > O,wecandefineIm(Gm)-I = (l/cum)2andhenceequation(3.6a) 
can be written as 

(3.7) Atm = (ym- I) tam- I * E m  - 1 - 2 y m  - 2  

with 

Y" = Gm(Zm-l)t/cum. 

We shall now polar decompose Ym as WmJm (Halmos 1967) where J"= 
[(Ym)tYm]l/2 and Wm is a partial isometry from the range of J" to the range of Y" and 
thus IIW"IIz = 1. With this we can write equation (3.7) as 

(3.8) 
In a similar manner. defining I m p ) - '  = ( l / p m ) 2  3 X' > 0, we may write equation 

A t m  = Jm - I[ ( W m  - I)t,m - 1AZm- I @-2Wm- 21 Jm -2, 

(3.66) as 

(3.9) h ~ m  = $ m - l [ ( w m -  I ) t p m - I ~ ~ m - l p m - 2 w m - Z J $ m - 2  = $"-I&-- l$,m-2 

where 
p = [(op)+%m]@ with C!P = rmKt/pm 

(3.10) 
&m = (wm)tpmACmpm - lwnr- I, 

With the help of equations (3.8) and (3.9) we can write equation (3.10) as 
&m = [ ( W m ) t g m J m - t ( w - I ) t c u m - l $ m - I ] & m - 2 [ $ m - 3 c u m - 2  m - 2  m-2 m - 1  W J p W--I]. 

(3.11) 

Now 

1 l 9 m - 2 ~ m -  I w m -  1112 ==sup (P,Icu"-'($"-2)t$,m-*cu"-I I ~ M P l l Z  
,T 

because ljWml12 = 1. Here, supT indicates the upper bound. But, we observe that 
( $ m - Z ) t $ , m - 2  = ( Q m - 2 ) t % m - 2  = K(rm-Z) t rm-2Kt /GB"-Z )2  

= K ( P - 2 ) t  Im(rm-2)-1P'2Kt  = -Im'%(Zm-') = - ImZm-' .  

cu"-'Wm- lllZ s sup (q Inm- (- Im Z m -  ' ) cum-  I q)/llq I j 2 .  

(3.12) 
The above result follows from equation (3.3b). Thus we have 

T 

We now define lx) = ru"-'/q), and then we get 

Now from equations (3.4) and (3.5) we observe that 
1 ~ Z m - 1  = Im r-2 ( G m - l ) - l  =(Gvc)-I -5"-I 

where 
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!F2 = KP"'Kt. 

Thus, equation (3.13) readily gives us 

Now, since 1m(GJ1 2 a > 0 and -1m 6 = -1m Z 
becomes 

b > 0, the above expression 

I l $ m - 2 , m - I w m - I I I z  < b / (a  + b)  

I l p - 2 a m - l W m - I I I 2  = A *  < 1. 

with both a and b > 0. Thus we immediately get 

Again, in an exactly similar manner, we can get 

IIJm-1/9"Wm112 = A2 < 1. 

Thus, from equation (3.11) we have 
ljsamlj sz A21192"-2/l A = ( A l A z ) " 2 < l ~ ~ ~ ~ m ~ l < A m ~ ~ ~ o ~ ~  (3.14) 

(3.15) 

Since ($m)'$m = -1m SE"+' (from equation (3.12)) and Z"+' is always bounded, if 
we start from a bounded Zo (see proposition 2) we have II$'"II s q, where q is some finite 
number. The same is true for an initial bounded starting IlsBoII. Thus from (3.14) and 
(3.15) we finally get 

IlAZ"ll sz q*A"-' llsloll j IIZP - Zqll 6 q2 IlsSoII 

Thus Zm is a Cauchy sequence and, therefore, will converge to a unique value as m - W. 

P-1 

! = a  
Aj+ 0 a s p , q +  13. 

4. Conclusions 

We have shown in this paper that the CCPA, introduced through the ASF, preserves 
all the analytic properties of the Green function and the self-energy and, therefore, 
guarantees non-negative density of states. This approximation retains the translational 
invariance of the effective medium. 
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